
 

Copyright © 2025 The Author(s). This is an open-access article distributed under the terms of the Creative Commons 

Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). 108 

 

ISA Journal of Medical Sciences (ISAJMS) 

Homepage: https://isapublisher.com/isajms/ 

    Email: office.isapublisher@gmail.com 

Volume 2, Issue 4, Jul-Aug, 2025                ISSN: 3049-1746 

 

A Low-Cost System for Ambulatory Gait Analysis in Cerebral Palsy 

Using Wearable Inertial Measurement Units (IMUs) and Data 

Analytics 

Priya Sharma, MBBS, MD1*, Nicki James Shepherd2 

 
1 Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India 
2 Bar Practice Course, The University of Law, Leeds, United Kingdom 

 

Received: 01.07.2025 | Accepted: 27.07.2025 | Published: 27.07.2025 

*Corresponding Author: Priya Sharma, MBBS, MD1*, Nicki James Shepherd2 

DOI: 10.5281/zenodo.16502993  

Citation: Sharma, P., & Shepherd, N. J. (2025). A low-cost system for ambulatory gait analysis in cerebral palsy using wearable inertial 

measurement units (IMUs) and data analytics. ISA Journal of Medical Sciences (ISAJMS), 2(4), 108-115. 

 

1. INTRODUCTION 

Cerebral Palsy (CP) describes a group of permanent 

disorders of the development of movement and posture, 

attributed to non-progressive disturbances that occurred in the 

developing fetal or infant brain. It is the most common cause of 

childhood physical disability, with a prevalence in the UK of 

approximately 2-2.5 per 1,000 live births (NHS England, 2022). 

The motor disorders of CP are often accompanied by 
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Background: Objective gait analysis is fundamental to the clinical management of motor function in individuals with Cerebral Palsy 

(CP), guiding therapeutic interventions and assessing surgical outcomes. The current gold standard, laboratory-based 3D motion 

capture, is expensive, resource-intensive, and provides only a brief snapshot of performance in an artificial environment, limiting its 

utility for routine monitoring. This study addresses the need for an accessible, ecologically valid alternative. 

Objective: To develop, validate, and demonstrate the clinical feasibility of a low-cost, wearable system using two Inertial 

Measurement Units (IMUs) for the objective analysis of key spatio-temporal gait parameters in ambulatory adolescents with CP. 

Methods: Twenty ambulatory adolescents (mean age 14.2 ± 2.1 years) with a diagnosis of spastic diplegic CP (GMFCS Levels I-

III) were recruited. Each participant wore two IMU sensors, affixed to the lateral aspect of each ankle. Participants performed a 10-

Metre Walk Test (10MWT). Raw sensor data were processed using a custom script to identify gait events and calculate spatio-

temporal parameters, including walking speed, cadence, step length, and a gait asymmetry index. The IMU- derived walking speed 

was validated against the manually timed 10MWT. Gait parameters were compared across GMFCS levels. 

Results: A very strong, positive correlation was found between the walking speed calculated by the IMU system and the manually 

timed 10MWT (r=0.98, p<0.001). The IMU system detected statistically significant differences in gait parameters across GMFCS 

levels. Mean gait speed decreased significantly with increasing functional impairment (GMFCS I: 1.28 m/s, GMFCS II: 1.05 m/s,  

GMFCS III: 0.81 m/s; p=0.002). Similarly, cadence and step length were significantly reduced, while the gait asymmetry index was 

significantly higher in participants with greater motor impairment (p<0.01). 

Conclusion: A simple, low-cost, two-sensor IMU system can provide valid, reliable, and clinically meaningful data on gait in 

adolescents with CP. This technology offers a practical and scalable solution for moving gait analysis from the specialised laboratory 

into community clinics and home environments, facilitating objective, long-term monitoring and supporting the delivery of 

personalised healthcare. 
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disturbances of sensation, perception, cognition, 

communication, and behaviour. For the majority of individuals 

with CP who are ambulatory, disordered gait is a primary 

contributor to functional limitation and reduced participation in 

daily life (Gage, 2009). 

The quantitative analysis of gait is therefore a cornerstone of 

modern CP management. It provides objective data to inform 

clinical decision-making regarding physiotherapy regimens, 

orthotic prescriptions, pharmacological interventions (e.g., 

botulinum toxin injections), and complex orthopaedic surgeries 

(Wren et al., 2011). The established gold standard for this 

analysis is the three- dimensional motion capture (3DMC) 

laboratory, which uses multiple cameras to track reflective 

markers placed on the body. While 3DMC provides 

comprehensive kinematic and kinetic data, its utility is 

constrained by significant limitations. These systems are 

prohibitively expensive, require specialised facilities and 

highly trained personnel, and are largely confined to tertiary-

level hospitals. 

Consequently, assessments are infrequent and do not capture 

the variability of a patient's gait in their natural environment, a 

concept known as ecological validity (Shull et al., 2014). 

The rapid advancement of micro-electro-mechanical systems 

(MEMS) has led to the proliferation of low-cost, lightweight, 

and portable Inertial Measurement Units (IMUs). An IMU 

typically contains a tri- axial accelerometer, gyroscope, and 

magnetometer, capable of capturing detailed information about 

a body segment's orientation and movement. Their potential to 

democratise motion analysis by taking it out of the lab has been 

demonstrated in other neurological conditions such as 

Parkinson's disease and stroke recovery (Gouwanda & Sanei, 

2015). However, the application of IMU technology to CP 

presents unique challenges due to the heterogeneity of gait 

patterns, which can include spasticity, ataxia, and dystonia, 

often combined within a single individual (Papageorgiou et al., 

2019).  Despite these challenges, the potential benefits are 

immense. An accessible and validated IMU-based system 

would align with the NHS Long Term Plan's focus on digital-

first, patient-centric care, enabling remote monitoring and 

reducing the significant travel and time burden on families. It 

could provide clinicians with longitudinal data, tracking 

changes in function over time or in response to therapy, rather 

than relying on isolated lab-based snapshots. 

This study aims to address the existing gap between the 

potential of wearable technology and its validated clinical 

application in CP. The primary objective was to develop and 

validate a simple, low- cost gait analysis system using just two 

ankle-worn IMUs against a standard clinical measure. We 

hypothesised that (1) IMU-derived spatio-temporal parameters 

would strongly correlate with established clinical metrics, and 

(2) the system would be sensitive enough to detect significant 

differences in gait characteristics across different functional 

levels of CP, as defined by the Gross Motor Function 

Classification System (GMFCS). 

2. METHODS 

2.1 Study Design 

A cross-sectional validation study was conducted at a 

regional UK physiotherapy service. The study protocol was 

designed to assess the concurrent validity of the IMU-based 

system against a standard clinical walking test and to evaluate 

its ability to discriminate between different levels of functional 

disability. 

2.2 Participants 

Twenty ambulatory adolescents with CP were 

recruited from NHS physiotherapy services in the UK. 

Inclusion criteria were: (1) a formal diagnosis of spastic 

diplegic cerebral palsy; (2) aged between 10 and 18 years; (3) 

able to walk 20 metres independently with or without walking 

aids (GMFCS Levels I, II, or III); (4) no orthopaedic surgery or 

botulinum toxin injections in the preceding six months. 

Exclusion criteria included any cognitive impairment that 

would preclude understanding instructions. Ethical approval 

was granted by the North West - Greater Manchester East 

Research Ethics Committee and all procedures conformed to 

the Declaration of Helsinki. Written informed consent was 

obtained from parents/guardians and written assent was 

obtained from all participants. 

2.3 Instrumentation 

The wearable system consisted of two Shimmer3 IMU 

sensors (Shimmer, Dublin, Ireland). Each unit incorporates a 

tri-axial accelerometer (±8g) and a tri-axial gyroscope 

(±2000°/s). The sensors were securely affixed using elasticated 

straps to the lateral aspect of each ankle, positioned just superior 

to the lateral malleolus (Figure 4). Data were sampled at 102.4 

Hz and wirelessly transmitted via Bluetooth to a laptop running 

data acquisition software.
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Figure 4: IMU Sensor Placement 

 
Figure 4.  IMU sensor placement. Schematic illustration 

showing the placement of IMU sensors on the lateral aspect of 

both ankles, positioned just superior to the lateral malleolus. 

The sensors were secured using elasticated straps. The 

coordinate system shows the orientation of the sensor axes 

relative to anatomical directions. 

2.4 Protocol 

Upon arrival, participant characteristics including age, 

sex, height, weight, and GMFCS level were recorded. The IMU 

sensors were fitted, and participants were asked to stand still for 

a 5-second static calibration. They then performed the 10-Metre 

Walk Test (10MWT). Participants walked at their self- selected 

comfortable pace along a 14-metre walkway, with the central 

10 metres being timed using a handheld stopwatch by a trained 

physiotherapist. To account for acceleration and deceleration, 

timing began when the first foot crossed the 2-metre mark and 

ended when the first foot crossed the 12- metre mark. Three 

trials were completed, with a 1-minute rest between each. The 

average time was used to calculate the manual walking speed. 

IMU data were collected for the full duration of each walk. 

2.5 Data Processing and Analysis 

IMU data were processed offline using a custom script 

written in MATLAB (R2024b, MathWorks, USA). 

Signal Filtering: Raw data from the gyroscopes and 

accelerometers were filtered using a fourth-order, zero-lag 

Butterworth low-pass filter with a cut-off frequency of 15 Hz to 

remove noise and movement artefacts. 

Gait Event Detection: An algorithm based on shank angular 

velocity was used to identify gait events. The large positive and 

negative peaks in the sagittal plane gyroscope signal were used 

to identify mid- swing and mid-stance, respectively. Initial 

Contact (IC) and Toe-Off (TO) events were then located within 

these cycles using established rules (Zijlstra & Hof, 2003) 

(Figure 5).

 

 

Figure 5: Gait Event Detection from Angular Velocity 
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Figure 5.  Gait event detection from angular velocity signals. 

Representative example showing the sagittal plane angular 

velocity signal from a shank-mounted IMU during one gait 

cycle. The filtered signal (blue line) shows characteristic peaks 

and valleys corresponding to gait events. Red triangles indicate 

detected initial contact (IC) events, and green triangles indicate 

toe-off (TO) events. Stance and swing phases are labeled. Data 

shown is from a participant with GMFCS level I cerebral palsy. 

Parameter Calculation: The first and last two gait cycles of 

each walk were discarded to ensure analysis of steady-state 

walking. The following spatio-temporal parameters were 

calculated for each trial and averaged: 

 Walking Speed (m/s): Calculated from the sum of 

step lengths divided by the total time. Cadence 

(steps/min): The total number of steps taken per 

minute. 

 Step Length (m): Estimated using validated 

biomechanical models. 

 Gait Asymmetry Index (GAI): Calculated based on 

step time differences between the left and right foot, 

using the formula: GAI = |ln(Left Step Time/Right 

Step Time)|. A value of 0 indicates perfect symmetry. 

2.6 Statistical Analysis 

All statistical analyses were performed using SPSS 

Statistics (Version 29, IBM). Descriptive statistics were used to 

summarise participant demographics and gait parameters. 

Pearson's correlation coefficient (r) was used to assess the 

concurrent validity between the IMU-derived walking speed 

and the manually timed 10MWT speed. A one-way analysis of 

variance (ANOVA) was used to compare mean gait parameters 

across the three GMFCS levels (I, II, and III). A Bonferroni 

post-hoc test was used for pairwise comparisons where 

significance was found. The level of statistical significance was 

set at α=0.05. 

3. RESULTS 

3.1 Participant Characteristics 

Twenty participants (12 male, 8 female) completed the 

study. The mean age was 14.2 years (SD = 2.1). The cohort 

consisted of 5 participants classified at GMFCS Level I, 9 at 

GMFCS Level II, and 6 at GMFCS Level III. Demographic data 

are summarised in Table 1.

 

Table 1. Participant Demographics and Clinical Characteristics (n=20) 

Characteristic GMFCS I (n=5) GMFCS II (n=9) GMFCS III (n=6) Total (n=20) 

Age (years), mean (SD) 13.8 (1.9) 14.5 (2.3) 14.1 (2.2) 14.2 (2.1) 

Sex (Male/Female) 3/2 5/4 4/2 12/8 

Height (m), mean (SD) 1.62 (0.11) 1.58 (0.09) 1.55 (0.12) 1.58 (0.10) 

Weight (kg), mean (SD) 51.4 (8.2) 48.9 (7.5) 46.2 (9.1) 48.8 (8.1) 

 

3.2 Validation of Walking Speed 

There was a very strong, positive, and statistically 

significant correlation between the walking speed derived from 

the IMU system and the speed calculated from the manually 

timed 10MWT (r=0.98, p<0.001) (Figure 1). A Bland-Altman 

plot showed excellent agreement between the two methods, 

with a mean difference (bias) of only 0.02 m/s and 95% limits 

of agreement between -0.09 and 0.13 m/s (Figure 2).

 

 
Figure 1: Correlation between IMU-derived and Manually Timed Walking Speed 
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Figure 1. Correlation between IMU-derived walking speed and 

manually timed walking speed. Scatter plot showing the 

relationship between walking speed measured by the IMU 

system and manual timing of the 10-metre walk test. The solid 

line represents the regression line (y = 0.99x + 0.01), and the 

dashed line represents perfect agreement (y = x). Each point 

represents one participant (n = 20). 

Pearson's correlation coefficient r = 0.98, p < 0.001.

 

 
Figure 2: Bland-Altman Plot for Walking Speed Measurement Agreement 

 

 

Figure 2. Bland-Altman plot for walking speed measurement 

agreement. The plot shows the difference between IMU-

derived and manually timed walking speeds plotted against 

their average. The solid horizontal line represents the mean 

difference (bias = 0.02 m/s), and the dashed lines represent the 

95% limits of agreement (-0.09 to 0.13 m/s). Each point 

represents one participant. 

3.3 Comparison of Gait Parameters across 

GMFCS Levels 

The IMU system was sensitive to differences in gait 

performance across the GMFCS levels. The one- way ANOVA 

revealed statistically significant differences for all key gait 

parameters (Table 2, Figure 3).

 

Table     2 .  Spatio-temporal Gait Parameters by GMFCS Level, mean (SD) 
 

Gait Parameter GMFCS I (n=5) GMFCS II (n=9) GMFCS III (n=6) p-value 

Walking Speed (m/s) 1.28 (0.08) 1.05 (0.11) 0.81 (0.13) 0.002 

Cadence (steps/min) 118.5 (5.4) 110.2 (6.1) 101.3 (7.2) 0.004 

Step Length (m) 0.65 (0.04) 0.57 (0.05) 0.48 (0.06) <0.001 

Gait Asymmetry Index 0.05 (0.02) 0.11 (0.04) 0.18 (0.06) 0.005 

 

Post-hoc analyses confirmed that participants in GMFCS Level 

I walked significantly faster, with a higher cadence and longer 

step length than those in Levels II and III. Participants in Level 

II were also significantly faster than those in Level III. The Gait 

Asymmetry Index was significantly lower (indicating more 

symmetric gait) in the GMFCS I group compared to the 

GMFCS III group.
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Figure 3: Gait Parameters by GMFCS Level 

 

 

Figure 3.  Comparison of gait parameters across GMFCS 

levels. Box plots showing four key gait parameters: (A) 

Walking speed (m/s), (B) Cadence (steps/min), (C) Step length 

(m), and (D) Gait Asymmetry Index. Boxes represent 

interquartile ranges, horizontal lines within boxes represent 

medians, whiskers extend to 1.5 times the interquartile range, 

and outliers are shown as individual points. Significant 

differences between groups are indicated: ** p < 0.01, *** p < 

0.001. 

4. DISCUSSION 

The primary goal of this study was to determine if a 

simple, low-cost system using two ankle-worn IMUs could 

provide valid and clinically useful gait analysis for adolescents 

with CP. The results robustly support this goal. We have 

demonstrated that such a system can accurately measure key 

spatio-temporal parameters and is sensitive enough to 

distinguish between different levels of functional disability. 

The exceptionally strong correlation (r=0.98) between the 

IMU-derived speed and the stopwatch-timed 10MWT provides 

strong concurrent validity for the system's fundamental output. 

This finding is consistent with validation studies in other 

populations (e.g., stroke, elderly) and confirms that, for the 

crucial parameter of walking speed, this wearable technology is 

an acceptable proxy for standard clinical measures. The small 

bias found in the Bland-Altman analysis indicates that the two 

methods can be used interchangeably in a clinical context. 

More importantly, the study demonstrated the system's clinical 

sensitivity. The ability to significantly differentiate gait speed, 

cadence, step length, and asymmetry across GMFCS levels is a 

critical finding. It shows that the technology does not just 

measure movement, but provides clinically meaningful data 

that reflect a patient's functional status. For instance, a clinician 

could use the Gait Asymmetry Index as an objective marker to 

track the effects of a unilateral botulinum toxin injection or a 

new orthosis, something that is difficult to quantify with a 

simple stopwatch. This moves clinical practice from subjective 

observation ("the patient seems to be walking more 

symmetrically") to objective, evidence- based assessment. 

The clinical implications of this work are significant. Such a 

system could be deployed in local physiotherapy clinics across 

the UK, standardising assessments and creating large datasets 

for service evaluation. Furthermore, its portability and low cost 

pave the way for home-based monitoring. A patient could 

perform a weekly walking test in their own hallway, with the 

data automatically sent to their clinician. This would provide a 

longitudinal view of their functional mobility, capture the 

effects of fatigue or medication, and reduce the burden of travel 

for families, a considerable factor for those living in more rural 

areas. 

4.1 Limitations 

This study has several limitations that should be 

acknowledged. Firstly, the sample size was modest, and 

recruitment was limited to individuals with spastic diplegia, 

which may limit the generalisability of the findings to other 

types of CP (e.g., dyskinetic or ataxic). Secondly, we did not 

perform a direct comparison with the gold standard of 3DMC; 

our validation was against a standard clinical test. While this 

reflects our aim of providing a clinical alternative, direct 

validation is an important next step. 

Thirdly, our gait parameter calculations were limited to spatio-

temporal metrics. We did not compute joint kinematics (e.g., 

knee flexion angles), which requires more complex modelling. 

Finally, the protocol was limited to walking on a flat, even 

surface, and performance on more challenging terrains was not 

assessed. 

4.2 Future Work 

Building on these promising results, future work 

should focus on several areas. A larger-scale longitudinal study 

is needed to assess the system's ability to track changes over 

time in response to specific interventions. Direct validation 

against a 3DMC system is required to fully quantify its 

accuracy. The algorithms should be expanded to include the 
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calculation of key kinematic parameters and to be validated for 

use on stairs and uneven ground. Finally, developing a user-

friendly smartphone application to guide patients through tests 

and provide immediate feedback would be crucial for 

successful translation into home-based clinical practice. 

CONCLUSION 

This study demonstrated that a low-cost, accessible 

gait analysis system using two ankle-worn IMU sensors is a 

valid and sensitive tool for quantifying key gait characteristics 

in ambulatory adolescents with cerebral palsy. The technology 

provides objective, reliable data that is correlated with 

functional level and has the potential to move gait assessment 

from the confines of the specialist lab into everyday clinical and 

home environments. By democratising access to quantitative 

motion analysis, such systems can play a pivotal role in the 

future of personalised, data-driven, and remote healthcare for 

individuals with cerebral palsy. 
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