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1. INTRODUCTION 

Cryptography seeks to secure communication through the 

encoding of information in a way that prevents unauthorized 

access. Traditional cryptographic methods often rely on 

computational complexity, but chaos-based cryptography 

leverages the inherent unpredictability and sensitivity of chaotic 

systems. 

Among these chaotic maps are: the quadratic map and the tent 

map which are widely studied due to their mathematical 

simplicity and rich dynamical behavior. Quadratic and tent 

maps, while simple and capable of generating chaotic behavior, 

suffer from limited key space and predictable patterns under 

certain parameters, making them vulnerable to cryptanalysis. 

Additionally, their low-dimensional structure and lack of 

complexity can hinder robustness and security in advanced 

cryptographic applications. To enhance performance, 

especially in cryptographic applications, hybridizations of 

chaotic maps have been proposed. 

This paper tends to hybridize the two simplest yet dynamically 

rich chaotic systems: the quadratic map and the tent map. These 

maps exhibit bifurcations, positive Lyapunov exponents, 

entropies and time series analytical behavior across specific 

parameter ranges, making them ideal candidates for secure 

encryption applications. 

2. MOTIVATION 

The hybridization of quadratic and tent maps is motivated by 

the inherent limitations observed in each map when used 

individually for applications such as cryptography and complex 

system modeling. The quadratic map, although capable of 

producing chaotic behavior, is sensitive to parameter changes 

and often exhibits periods of stability within specific intervals, 

reducing its unpredictability. Similarly, the tent map, while 

piecewise linear and computationally efficient, suffers from 

limited complexity and can produce symmetrical patterns that 

weaken its security robustness. 
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To overcome these drawbacks, hybridizing both maps 

combines their complementary strengths, leveraging the strong 

nonlinearity and bifurcation properties of the quadratic map 

with the uniform distribution and sharper transitions of the tent 

map. This integration enhances the entropy, complexity, and 

overall chaotic behavior of the resulting system, making it more 

suitable for secure communication, pseudorandom number 

generation, and data encryption. Thus, the hybrid map offers 

improved dynamical diversity and greater resistance against 

statistical and differential attacks, which are critical in 

cryptosystem design. 

From the foregoing, it is obvious that both quadratic and tent 

maps have peculiar deficiencies that make them not suitable for 

systems where high security is required. Hence, the need for a 

hybridized map that can bridge the notable gaps. 

3. RELATED WORKS 

3.1 Mathematical Background 
Chaos theory studies the behavior of dynamical systems that are 

highly sensitive to initial conditions, a phenomenon popularly 

referred to as the "butterfly effect." In discrete-time systems, 

maps such as the tent and quadratic maps provide 

straightforward frameworks for generating chaotic sequences. 

3.2 Discrete Dynamical Systems 
A discrete map (or discrete dynamical system) is a 

mathematical function that describes how a point in a space 

evolves over discrete time steps. 

A discrete map defines the evolution of a system as represented 

in Equation 1: 
𝑥𝑛+1 = f(𝑥𝑛) (1) 

Where 

xn is the state of the system at time step n and f is the map (or 

rule) that determines how the state changes from one time step 

to the next. 

3.3 The Quadratic Map 

The quadratic map is a well-known one-dimensional iterative 

function that exhibits period-doubling bifurcations and routes 

to chaos for varying parameter (Strogatz, 2018). Though 

structurally simple, it demonstrates complex dynamical 

phenomena such as bifurcation cascades and sensitive 

dependence on initial conditions. It is a nonlinear discrete 

dynamical system defined by Equation 2 as: 

 xn+1  = r(xn
2 − 1)  (2) 

Where r is a control parameter. It exhibits a wide range of 

behaviors, from stable fixed points to periodic and chaotic 

dynamics, depending on the value of 𝑟. The map is sensitive to 

initial conditions and is commonly used in chaos theory and 

cryptography for its unpredictability. 

However, quadratic map has some notable limitations. Firstly, 

its chaotic regime is limited to specific values of the parameter 

r, beyond which the system can diverge to infinity, making it 

less stable for broad applications. Secondly, its unimodal and 

smooth structure can make it predictable under certain 

numerical or analytic attacks in cryptographic systems. 

Additionally, due to its symmetric and deterministic nature, the 

quadratic map may lack sufficient complexity when used alone 

in secure communications, requiring hybridization with other 

maps for enhanced security. 

Its lack of uniform invariant density and limited chaotic range 

reduce its utility in secure encryption systems (Li et al., 2005). 

3.3 The Tent Map 

The tent map is a piecewise linear discrete map defined in 

Equation 3 as: 

 
𝑥𝑛+1 = {

𝑟𝑥𝑛,             𝑖𝑓 𝑥𝑛 < 0. 5   

𝑟(1 − 𝑥𝑛),     𝑖𝑓𝑥𝑛 ≥ 0.5    
 

(3) 

It is shaped like a triangle ("tent") and maps the interval [0,1] to 

itself with a well-known uniform invariant density making it 

desirable for applications requiring pseudo-randomness and 

ergodicity (Alligood et al., 1996). The tent map is also 

computationally efficient.  

The behavior of the system depends on the control parameter r, 

typically in [0,2]. 

For certain values of r, the tent map exhibits chaotic behavior 

with high sensitivity to initial conditions. 

It is commonly used in modeling, encryption, and studying 

deterministic chaos. Nevertheless, its linear structure and finite 

state space may limit unpredictability in cryptographic use 

when compared to more nonlinear chaotic maps. It is easy to 

analyze and potentially predictable, which can reduce its 

effectiveness in cryptographic applications. Additionally, the 

tent map’s maximum entropy and chaotic behavior are highly 

dependent on precise parameter tuning; small deviations can 

lead to loss of chaos or degeneracy. Furthermore, it lacks the 

deep nonlinear complexity found in other maps, limiting its 

standalone capacity to generate strong pseudo-random 

sequences for high-security systems. 

Hybridization aims to merge the nonlinearity of the quadratic 

map with the uniform density and ergodic properties of the tent 

map. Recent works ((X. Wang et al., 2017); (Jangir & Yadav, 

2021)) show that hybrid chaotic maps significantly increase key 

space, entropy, and unpredictability which are key metrics in 

securing communication systems. 

Hybrid maps have been demonstrated to have broader chaotic 

regions, enhanced Lyapunov exponents, and improved entropy 

measures. For instance, (Jangir & Yadav, 2021) showed that the 

hybrid map outperforms individual maps in resisting statistical 

and differential attacks in chaos-based encryption schemes. 

3.4 Observation From Review of Related Works 

1. Hybrid maps require careful parameter tuning; 

otherwise, they may lose chaotic behavior and exhibit 

periodic or unstable dynamics (Wang et al., 2021). 

2. The increased complexity from combining two or more 

maps leads to higher computational demands and longer 

processing time (Zhang & Chen, 2020). 

3. Some hybrid maps can experience transitions from 

chaos to regular behavior under certain parameter 

settings, making long-term prediction difficult (Li et al., 

2022) 
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4. Due to the novelty of many hybrid models, they often 

lack standardized analytical frameworks for evaluating 

bifurcation, Lyapunov exponents, or entropy metrics 

(Kumar & Singh, 2019). 

The hybridized map is characterized as follows: 

 Nonlinear and piecewise structure for richer dynamics 

 Higher complexity and unpredictability 

 Increased sensitivity to initial conditions 

 Broader chaotic range over parameter values 

 Better randomness and entropy generation 

3.7 Applications and Evaluations 

Quadratic and tent maps have been integrated into image 

encryption algorithms, random number generators, and 

watermarking systems (Pareek et al., 2006). However, 

individually, they face challenges such as periodic windows and 

deterministic predictability. Hybrid maps, by comparison, 

generate more complex dynamics, eliminating weaknesses 

inherent in standalone maps. 

Studies have evaluated these maps using metrics such as 

bifurcation diagrams, Lyapunov exponents, entropy analysis, 

and statistical correlation coefficients. Hybrid maps 

consistently show superior performance in these evaluations, 

underscoring their potential for advanced cryptographic 

protocols (Khadir & Oubrahim, 2020). 

4. METHODOLOGY 

This section details the systematic approach adopted to design 

and implement a hybridized Quadratic-Tent Map (QTM) for 

chaotic signal generation, a core component of the proposed 

cryptographic framework. The methodology is divided into 

three stages: (i) defining the hybrid map, (ii) implementing the 

chaotic sequence generator, and (iii) validating the system 

through statistical metrics such as Lyapunov Exponent, 

entropy, and bifurcation analysis. 

Hybridized Chaotic Map 

A hybridized chaotic map combines two chaotic maps (the 

quadratic map and the tent map) to form a single system with 

enhanced dynamical behavior. It inherits features from both 

maps, like the nonlinearity of the quadratic map and the sharp 

switching behavior of the tent map. 

The hybrid system is defined by Equation 4 as follows: 

Let quadratic map 𝑄(𝑥) = 𝑟(𝑥2 − 0.5) and  

Tent map    𝑇(𝑥) = {
 𝑟𝑥,                    𝑖𝑓 𝑥 < 0.5    

𝑟(1 − 𝑥),           𝑖𝑓𝑥 ≥ 0.5     
then 

𝐻(𝑥) = 𝑇(𝑄(𝑥)) =   {
 𝑟(𝑟(𝑥2 − 0.5)),    𝑖𝑓 𝑟(𝑥2 − 0.5) < 0.5    

𝑟(1 − 𝑟(𝑥2 − 0.5)),   𝑖𝑓𝑟(𝑥2 − 0.5) ≥ 0.5     
 

𝐻(𝑥) = 𝑇(𝑄(𝑥)) =   {
 𝑟2(𝑥2 − 0.5)),𝑖𝑓 𝑟(𝑥2 − 0.5) < 0.5    

𝑟 − 𝑟2(𝑥2 − 0.5), 𝑖𝑓 𝑟(𝑥2 − 0.5) ≥ 0.5     
 

In order to keep  H(x) in the range of 0 and 1 we introduce  

modulus 1 into function H(x), hence 

𝑯(𝒙) = 𝑻(𝑸(𝒙))𝒎𝒐𝒅 𝟏 =   {
 𝒓𝟐(𝒙𝟐 − 𝟎. 𝟓))𝒎𝒐𝒅 𝟏,       𝒊𝒇 𝒓(𝒙𝟐 − 𝟎. 𝟓) < 𝟎. 𝟓    

𝒓 − 𝒓𝟐(𝒙𝟐 − 𝟎. 𝟓) 𝒎𝒐𝒅 𝟏, 𝒊𝒇 𝒓(𝒙𝟐 − 𝟎. 𝟓) ≥ 𝟎. 𝟓     
 

(4) 

 

Where H(x) is the hybridized map. The pseudocode represented 

by Algorithm 1 gives the procedure for  generating sequence of 

random value using hybrid map H(x). 

Algorithm for QTM Sequence Generation 

Algorithm 1: Hybrid Quadratic-Tent Map Generator 

Input: 

 Initial condition:𝑥0 ∈ [0,1]  

 Control parameter r 

 Number of iterations, N 

Output: 

 Chaotic sequence 𝑋 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛}, 𝑥𝑖 ∈ [0,1], 𝑖 =
1,2, … . 𝑛 

1:     START 

2:     INITIALIZE sequence array X ← [ ] 

3:     SET X[1] ← 𝑥0 

4:     FOR i ← 2 to N do 

5:          𝐼𝐹 𝑟(𝑋[𝑖 − 1]2 − 0.5) < 0.5   then 

6:                 𝑋[𝑖] = 𝑟2(𝑋[𝑖 − 1]2 − 0.5))𝑚𝑜𝑑 1 

7:            ELSE 

8:                  𝑋[𝑖] = (𝑟 − 𝑟2(𝑋[𝑖 − 1]2 − 0.5))𝑚𝑜𝑑 1         

 9             ENDIF 

10:    ENDFOR 

11:    OUTPUT X 

12:    STOP 

Implementation Environment 

The implementation was carried out using Python 3.11 with 

NumPy for numerical computation and Matplotlib for 

visualization. The system was tested over a range of initial 

conditions and parameter values to assess its chaotic behavior 

through entropy, Lyapunov exponent, time series, and 

bifurcation analysis. 

Chaotic Behavior Validation 

 The following metrics were used to validate the 

effectiveness of the modified hybrid QTM: 

 Lyapunov Exponent to quantify sensitivity to initial 

conditions. 
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 Permutation Entropy and Approximate Entropy for 

statistical complexity. 

 Bifurcation Diagram to study transitions from periodic 

to chaotic behavior. 

 Time Series Analysis to proof the enhanced chaotic 

behaviour. 

These validation steps ensure the proposed hybrid system 

generates strong randomness properties ideal for cryptographic 

use. 

5. ANALYSIS, DISCUSSION AND RESULTS 

5.1 Bifurcation Diagram Analysis 

Bifurcation diagrams illustrate the long-term behavior of the 

system as parameters vary. In chaotic cryptosystems, 

bifurcation helps identify ranges with high entropy and 

sensitivity. Figure 5.1 shows the bifurcation diagrams of the 

three (3) maps, Quadratic, Tent and Hybrid maps. It is 

obviously seen that the hybrid map combines the nonlinearity 

of the quadratic map with the sharp switching behavior of the 

tent map. The bifurcation diagram exhibits higher density and 

complexity, with more irregular and fragmented patterns than 

the individual maps. The chaotic region is extended, and the 

transitions between periodic and chaotic regimes appear more 

sudden and irregular. It shows increased entropy and 

unpredictability, which is beneficial for cryptographic 

applications. This fusion makes the system more resistant to 

attacks and more robust as a chaotic key generator in secure 

systems. 

 

Figure 5.1: Bifurcation Diagrams of Quadratic, Tent and 

Hybrid (MHM) maps 

Quadratic Map Bifurcation Diagram Analysis 

The bifurcation diagram of the quadratic map exhibits a 

classical route to chaos. Initially, for small r, the system 

converges to a stable fixed point. As r increases, a period-

doubling cascade begins, indicating bifurcations to period-2, 

period-4, and so on until chaotic behavior emerges beyond a 

critical threshold (around r≈1.2) 

In the chaotic regime, the diagram shows a dense spread of 

points, reflecting the sensitivity of the system to initial 

conditions and parameter values. However, windows of 

periodicity are also observed where the system momentarily 

returns to periodic orbits amidst chaos. 

This implies that the quadratic map demonstrates deterministic 

chaos, but its structural symmetry and potential limited range 

of chaos may reduce its cryptographic strength unless 

combined with another map.  

Tent Map Bifurcation Diagram Analysis 

 The bifurcation diagram for the tent map reveals a 

strikingly different structure. As r approaches 2, the diagram 

quickly enters a fully chaotic state. 

Unlike the quadratic map, the tent map's bifurcation diagram 

lacks deep period-doubling transitions. Instead, it displays a 

more uniform transition to chaos. For values of r∈(1.4,2), the 

system becomes ergodic and mixing, with points evenly 

distributed across the space. 

This implies that the tent map’s uniform chaotic behavior and 

wider range of chaotic r values make it suitable for 

cryptographic schemes requiring high statistical randomness 

and minimal predictability. 

Modified Hybrid Map (MHM) Bifurcation Diagram 

Analysis 

 The hybrid map combines the dynamics of the 

quadratic and tent maps: 

Its bifurcation diagram showcases a complex, rich structure, 

synthesizing the nonlinear bifurcation features of the quadratic 

map with the uniform chaos of the tent map. As r increases, the 

hybrid system undergoes early bifurcations and enters chaos 

more rapidly. 

Unlike the individual maps, the hybrid bifurcation diagram 

displays noisy, intricate bands of chaos and irregular bursts of 

periodicity. This complexity translates to greater entropy and a 

larger key space when applied in secure systems. 

It implies that hybrid map provides enhanced security by 

avoiding predictability and increasing randomness. Its 

bifurcation behavior supports robust key generation in chaos-

based cryptographic applications. 

5.2 Lyapunov Exponent 

The Lyapunov exponent quantifies how sensitive a system is to 

initial conditions. 

This measures the average rate of separation of infinitesimally 

close trajectories. Positive values indicate chaos. The Lyapunov 

Exponent lambda λ is a quantitative measure of the sensitivity 

of a dynamical system to initial conditions. It describes the 

average rate of divergence of nearby trajectories in phase space. 

A positive Lyapunov exponent indicates chaos. Small 

differences in initial states grow exponentially over time, 

whereas a negative exponent suggests convergence to stable 
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points or periodic orbits. 

Figure 5.2 represents the Lyapunov Exponent of Quadratic, 

Tent and Hybrid maps. The hybrid map’s Lyapunov diagram 

shows a richer and more complex structure. λ becomes positive 

in a broader parameter range, indicating extended chaos 

compared to the individual maps. The diagram exhibits 

fluctuating peaks and dense bands, reflecting irregular 

dynamics and sensitivity to both r and the nested function 

structure. The combination increases entropy and decreases 

predictability which is ideal for securing cryptographic 

systems. 

Small perturbations in parameters or initial values lead to 

significantly different outputs which is a desirable trait in 

chaos-based encryption. 

Figure 5.2: Lyapunov Exponent of Quadratic, Tent and Hybrid 

Maps 

Lyapunov Exponent of the Quadratic Map 
The Lyapunov exponent of the quadratic map, plotted across 

the control parameter range starts negative, indicating stable 

fixed points and becomes positive near r≈1.25, signifying the 

onset of chaos. The curve displays a non-monotonic behavior 

with alternating windows of positive and negative values, 

corresponding to periodic windows within the chaotic region. 

The quadratic map transitions into chaos via period doubling, 

and the Lyapunov plot reflects this rich structure. However, the 

presence of regular patterns implies a partially predictable 

system, which could be a vulnerability in cryptographic 

contexts if not properly masked. 

 

Lyapunov Exponent of the Tent Map 
As shown in Figure 5.2, the Lyapunov exponent of the tent map 

remains positive for most values of r>1r and approaches a 

maximum near r=2. Unlike the quadratic map, the curve is 

smoother and consistently above zero, with minimal periodic 

interruptions. 

This suggests that the tent map exhibits stronger and more 

persistent chaos, which makes it suitable for secure systems 

requiring high entropy and minimal long-term predictability. Its 

consistent positive Lyapunov exponent implies that its output 

diverges exponentially, maximizing uncertainty. 

Lyapunov Exponent of the Hybrid Map 
The Lyapunov exponent of the hybrid map (Figure 5.2) 

demonstrates a more complex and irregular profile. It becomes 

positive earlier than in the quadratic map and achieves higher 

peaks, indicating stronger chaotic behavior. The curve is 

rugged, with frequent fluctuations, suggesting intermittent 

chaos and sensitive dependence on both the control parameter 

and the composition of the mapping functions. 

The hybrid system inherits and enhances the chaotic dynamics 

of both parent maps. The early onset and higher magnitude of 

positive Lyapunov exponents highlight its high sensitivity and 

randomness that are key indicators of cryptographic strength. 

Its irregular structure confirms dynamic richness, suitable for 

secure key generation and message scrambling. 

 

5.3 Time Series Analysis 
The time series diagram offers crucial insight into the temporal 

behavior of chaotic systems. It reveals how successive values 

evolve with respect to iteration steps, thereby illustrating the 

dynamical complexity and unpredictability of the system. 

Figure 5.3 displays the time series plots of the Quadratic Map, 

Tent Map, and the proposed Hybrid Map under chaotic regimes. 

Figure 5.3: Time Series Analysis of Quadratic, Tent and Hybrid Map 

 

Quadratic Map Time Series Analysis 
The time series of the quadratic map (Figure 5.3a) for r=1.4 

exhibits an irregular and non-repeating pattern. This non-

periodic behavior is a characteristic of deterministic chaos. The 

values oscillate unpredictably, diverging from any fixed or 

periodic behavior. The sequence reveals a sensitive dependence 

on initial conditions, whereby a minute alteration in the starting 

point results in drastically different trajectories. Although the 

quadratic map does produce chaotic behavior, it may suffer 

from limitations such as finite state-space coverage and 

potential symmetry, which can be exploited in cryptanalysis. 
 

Tent Map Time Series Analysis 
In contrast, the tent map’s time series for r=1.9 reveals a jagged, 

piecewise-linear dynamic, with values constrained within the 

unit interval [0,1]. In Figure 5.3b, the system alternates between 

upward and downward slopes, creating a visibly sharp yet 

chaotic trajectory. Despite its linearity in segments, the tent map 

remains chaotic and ergodic, and it demonstrates stronger 

statistical properties, including uniform distribution. This 

makes it a favorable candidate in pseudo-random number 

generation and stream cipher design. Its simplicity, however, 

may lead to predictability when subjected to exhaustive attack 

models if not hybridized or enhanced. 

Hybrid Map Time Series Analysis 
The time series of the hybrid quadratic-tent map (with r=1.2) as 

shown in Figure 5.3c, is a more sophisticated chaotic trajectory. 

It synthesizes the nonlinearity of the quadratic map with the 

piecewise behavior of the tent map. The resulting dynamics 

exhibit sharper fluctuations, complex structure, and an absence 

of repetition, indicating enhanced chaotic behavior. The 
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combination introduces a richer state space, higher entropy, and 

increased randomness, addressing the individual limitations of 

both maps. This improved dynamical performance validates its 

suitability for secured cryptosystems, as it ensures 

unpredictability, increased key space, and resistance to 

statistical and brute-force attacks. 

5.4 Permutation and Approximate Entropy 

Analysis 

Entropy measures provide insight into the complexity and 

unpredictability of a time series. While Shannon entropy 

evaluates the statistical randomness of values, other 

entropy metrics like Permutation Entropy and 

Approximate Entropy assess the temporal structure and 

pattern diversity of chaotic systems. These are 

particularly important in cryptographic applications 

where both unpredictability and irregularity are desired. 

Figure 5.4 shows the Permutation and Approximate 

Entropies of Quadratic, Tent and Hybrid maps 

 

 
Figure 5.4: Permutation and Approximate Entropy 

Permutation Entropy (PE) is a robust metric that evaluates 

the disorder in the ordering of time series values, rather than 

their magnitude. It ranges between 0 (completely predictable) 

and 1 (completely random), making it suitable for detecting 

subtle changes in dynamics. 

Quadratic Map (PE) 
The increase in PE across this transition confirms the onset of 

higher dynamical complexity and unpredictability. However, 

PE also fluctuates due to the presence of periodic windows 

amidst chaos. 

Tent Map (PE) 
In contrast to the quadratic map, the tent map maintains a 

consistently high PE across most values of r, except when r is 

less than 1, where the system is trivial. This reflects the 

inherently chaotic nature of the tent map, which lacks periodic 

windows and shows persistent structural disorder. Its linearity, 

combined with abrupt slope changes, produces maximal ordinal 

pattern diversity, thus elevating PE values. 

Hybrid Map (PE) 
The hybrid map constructed by feeding the quadratic map 

output into the tent map, exhibits high and relatively stable PE 

across a wide range of r. Unlike the quadratic map, it suppresses 

periodicity and reduces the fluctuation of entropy values. This 

stability indicates enhanced randomness and a more uniform 

chaotic regime, making it suitable for applications requiring 

robust entropy sources. 

Approximate Entropy (ApEn) Analysis 

Quadratic Map (ApEn) 
ApEn displays a trend similar to PE, with low values in the 

regular regime and a sharp increase near the onset of chaos. 

The peak ApEn values are observed in regions where the 

system exhibits high sensitivity to initial conditions. However, 

due to its dependence on tolerance thresholds and pattern 

matching, ApEn can be affected by noise and finite data 

length. 

Tent Map (ApEn) 
The tent map produces high ApEn values consistently across r, 

indicating a high degree of pattern unpredictability. Compared 

to the quadratic map, its ApEn values are less sensitive to 

changes in the control parameter, demonstrating a more 

uniform complexity and randomness in the temporal patterns of 

the generated sequence. 

Hybrid Map (ApEn) 
From Figure 5.4, the hybrid map achieves the highest and most 

stable ApEn values among the three systems. The interaction 

between the nonlinear characteristics of the quadratic map and 

the piecewise nature of the tent map results in a complex 

attractor structure that reduces the recurrence of patterns. The 

enhanced irregularity of the time series confirms the hybrid 

map's ability to generate highly unpredictable sequences, a 

desired property in secure information systems. 

6. CONCLUSION 

This paper has demonstrated that the quadratic and tent maps 

provide an excellent foundation for secure cryptographic 

systems. Through bifurcation, Lyapunov exponent, time series 

analysis and entropy. We have shown that the hybrid of both 

maps possesses strong chaotic properties that are desirable in 

cryptographic applications. 

The hybrid function provides enhanced randomness, greater 

entropy, and resistance to brute-force attacks by exploiting the 

nonlinearity and piecewise nature of its components. 

Implementations using this model are suitable for image 

encryption, key stream generation, and secure lightweight 

communication protocols. 

Future work could extend to hardware implementation, 

testing resistance to known plaintext attacks, and 

exploring other entropy-enhancing chaotic hybrids. 
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