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1. Intrusion Detection Systems (IDS) are implemented to detect 

and control undesirable malicious actions that compromise 

integrity, confidentiality and availability of information within 

the network infrastructure. Cyberattacks are changing in 

complexity and scale, and as they do so, the necessity of smart, 

agile, and performance-driven IDS solutions is becoming more 

pressing than ever. Researchers often use benchmark datasets 

to test the effectiveness of such systems and they simulate real-

world traffic and attack conditions. Of those, CIC-IDS-2017 

and CIC-IDS-2018 have become standardized, widely 

applicable data, since they include a multitude of types of 

attacks, realistic traffic distributions, and labeled data useable 

in supervised training. 

Although they are popular, most models of IDS are not 

compatible with a broad range of datasets. The distribution of 

features, the frequency of attacks, and the behaviour of traffic 

are regularly different, resulting in large declines in detection 

and generalization performance. This is an issue that arises 

when IDS models are implemented in dynamic environments 

where traffic and threat vectors are also undergoing 

transformation. Ensemble learning has emerged as an attractive 

solution to this dilemma, i.e., to turn to a collection of classifiers 

to increase their strength and forecasting power. 

In this paper, a hybrid ensemble model has been suggested and 

evaluated on both CIC-IDS-2017 and CIC-IDS-2018 data sets. 

The model combines six machine learning algorithms; Logistic 

Regression, Naive Bayes, K-Nearest Neighbors, Support 

Vector Machines, Decision Trees and Random Forests in a 

bagging, boosting, stacking and voting system. With the 

complementary benefits of these algorithms, the ensemble is 

expected to increase detection accuracy, decrease false 

positives, and become more stable overall across datasets. In 
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this paper, the author explores the flexibility of the hybrid 

model and how it can be applicable in practical cybersecurity 

cases. 

Related Works 

 The role of cross-dataset assessment in building robust 

Intrusion Detection Systems (IDS) has become a growing focus 

of recent studies in the area. Rehman et al. (2024) showed that 

models trained on CIC-IDS-2018 perform poorly in comparison 

with ensemble models trained on CIC-IDS-2017, which is 

mainly because the distribution of attacks is different. Their 

relative comparison revealed that their ability to detect dropped 

to 87.6% with changing datasets. 

In a similar vein, Ahmed et al. (2024) presented a structurally 

configurable ensemble model, which predicted data property 

with a generalization accuracy of 92.8 percent at a variety of 

benchmarks. This perspective has been supported by Khan et 

al. (2023) who demonstrated that models of IDS trained on 

NSL-KDD fail to generalize when evaluated on CIC-IDS data, 

and suggested that the use of hybrid training methods can result 

in significant 6-8 percent improvements in model accuracy. 

The transfer learning architecture suggested by Zhou et al. 

(2024) could bring the feature representations between datasets 

and improve the detection accuracy by 85.3 to 91.5. According 

to the findings of the study by Singh and Mehta (2023), mixed 

datasets lead to a much better performance of ensemble models, 

which are trained on mixed datasets, compared to the single 

source, especially in the detection of zero-day attacks, where 

the F1-score increased by 9%. Alshamrani et al. also criticized 

these synthetic datasets claiming that they are too predictable 

(as opposed to real network traffic that inflates the measures of 

synthetic network accuracy). 

To solve this problem, Rahman et al. (2023) proposed a 

federated learning-based method that trains IDS models on a 

combination of multiple datasets and keeps the data privacy 

intact, with a consistent accuracy of over 90% on CIC-IDS-

2017, UNSW-NB15, and TON-IoT. Chen et al. (2024) found 

model performance as low as 12 percent when the model was 

out of their training set, highlighting the need to do 

comprehensive cross-dataset validation in a benchmarking 

framework. Ogunleye and Adebayo (2023) evaluated adaptive 

feature selection to enhance the transferability of the model 

between CIC-IDS and NSL-KDD to enhance precision and 

recall by 7%. 

Yadav et al. (2024) discovered that datasets are also affected by 

time-related dimensions and suggested the normalization 

approach that can help to increase the accuracy of the time 

anomaly detection by 10 percent. The datasets directly related 

to the IoT were of particular interest to Bello and Yusuf (2023), 

who discovered that the outdated models of IDS cannot be 

effectively applied to the IoT scenario due to the difference in 

protocols and the reduced precision rate of less than 80 percent. 

Finally, Tan et al. (2024) demonstrated that adversarial training 

can significantly increase model robustness on unseen samples, 

and the model can continue to classify with over 93% accuracy 

even when evasion is being applied to it. 

Subsequent additions to the body of research on IDS highlight 

the issue of variability in the dataset and the necessity of a 

dynamic model. 

Farooq et al. (2024) evaluated the results of deep learning 

models on both CIC-IDS-2017 and UNSW- NB15, and found 

that accuracy in cross-dataset transfer between models declined 

by 96.1% to 88.4%. To counter this loss they propose domain 

specific pretraining. 

Li and Zhao (2023) obtained 93.7 percent accuracy with the 

graph-based anomaly detection model in CIC-IDS-2018 and 0 

in NSL-KDD due to sparse representation of features and 

required further research to harmonize the features between 

datasets. 

Okeke et al. (2024) authors tried to balance the nature of the 

attacks with synthetic minority oversampling thus, recall was 

11 percent higher when the threats are under sampled, however, 

with lower accuracy and the authors suggest less aggressive 

sampling. 

Experimenting the IDS models on the cloud-native systems, 

Martins and Costa (2023) discovered that the latency and the 

loss of packets can influence the detection rate significantly, 

reaching its lowest point of 82% under the heavy load 

conditions. As a component of the training process, they 

propose the use of real-time traffic simulation to improve 

resilience. Lastly,  

Jain et al. (2024) have created a multi-modal IDS based on both 

network and host-based features in three datasets with an 

accuracy of 95.2% accuracy. They however also reported that 

the models complexity doubled training time by a factor of 40, 

which they say should be the focus of future work on 

lightweight architecture to utilize in real-time.  

Even the more recent articles continue to mention the challenge 

of generalizable IDS when other data sets are being used.  

Elhadi et al. (2024) trained the convolutional neural networks 

(CNNs) on CIC-IDS-2017 and BoT-IoT and achieved 94.5 and 

82.3 percent on the former and the latter, respectively. To avoid 

this performance gap, they provide data-dependent tuning and 

architectural hybrids.  

The proposed edge-computing IDS (Mwangi and Adepoju, 

2023) reached 89.6 percent accuracy on UNSW-NB15 and fell 

to 15 percent on real-time IoT traffic, so Mwangi and Adepoju 

(2023) advise that, going forward, adaptive learning should be 

used in this model. 

Self-supervised learning proposed by Chen and colleagues 

(2024) increased anomaly detection accuracy by 12% on three 

data sets, but they also noted that more rigorous pretext tasks 

were required when the data was noisy. Studying the effect of 

the feature dimensionality on the model performance, Fatima 

and Bello (2023) also found that reducing features by 80 to 30 

made the training speed four times faster with only 3 percent 

loss in accuracy, which is a trade-off that should be minimized 

by future models. 

Lastly, Rana et al. (2024) developed an IDS grounded in 

reinforcement learning which adjusts the detection thresholds 

dynamically to reach 92.1 percent on CIC-IDS-2018 and can be 

made to stabilize successfully at varying load levels. They offer 

to bring explainable AI features to gain more trust and 

interpretability in the working environment. 
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3. METHODOLOGY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Model Architecture. 

 

3.2. Datasets 

 CIC-IDS-2017 and CIC-IDS-2018 datasets are 

accepted as the most popular benchmark to evaluate intrusion 

detection systems because of their realistic traffic scenarios and 

attack scenarios. CIC-IDS-2017 has several types of network 

attacks like Distributed Denial of Service (DDoS), brute force 

attack, and intrusion attempts which provide an equal amount 

of both normal and malicious traffic. However, CIC-IDS-2018 

adds to the list more complicated and variation-rich types of 

attacks, such as botnet activity, denial of service (DoS), and 

web-based intrusions, and new traffic patterns related to 

changing cyber threats. The differences allow the two datasets 

to be complementary in determining generalization ability of 

IDS models. 

To achieve sound and objective model training, both sets have 

gone through a process of preprocessing. The feature values 
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were normalized in order to achieve a uniform scaling of the 

feature values, to prevent the dominance of high-magnitude 

attributes, and to improve convergence of the algorithms. To 

increase model interpretability and performance, feature 

selection methods were used to downsize the dimensionality 

and save only the most useful predictors of malicious behavior. 

Besides, the problem of the imbalance between classes, 

specifically, the under-representation of certain types of attacks, 

was removed using Synthetic Minority Over-sampling 

Technique (SMOTE). And since it creates synthetic samples 

representing minority classes, SMOTE can be used to avoid 

bias in models with majority classes and can detect threats of 

all types more accurately. All of these preprocessing strategies 

lead to a stronger and more objective assessment of the hybrid 

ensemble model on the two datasets. 

3.1. Model Architecture 

Hybrid Ensemble Architecture. 

 The hybrid ensemble model to be used in this study is 

developed based on the advantages of using several machine 

learning algorithms in combination with stacking and soft 

voting methods. It is a combination of six basic classifiers, such 

as; Logistic Regression, Naive Bayes, K-Nearest Neighbors, 

Support Vector Machines, Decision Trees and Random Forests, 

all with varying decision boundaries and learning behavior. 

During the stacking step, these base learners will make 

independent predictions, which are then sent to a meta-classifier 

that has been trained to synthesize these predictions and make 

the best final decisions. The resulting more exact and 

harmonized classification results from the fact that soft voting 

provides a more specific mean localization of the probabilistic 

actions of the underlying learners. This bi-layered ensemble 

design is more productive in generalization, overfitting, and 

robustness in heterogeneous datasets and is, therefore, 

applicable in intrusion detection in dynamic network graphs. 

This section entails a clear description of the machine learning 

models that are selected to train and evaluate them against the 

benchmark datasets employed in the current study. These 

models were chosen because they are widely used in the 

classification process, particularly, in intrusion detection 

because they have proven to be quite powerful in identifying 

patterns in complicated data sets. The chosen models are: 

Logistic Regression (LR), Naïve Bayes (NB), K-Nearest 

Neighbors (KNN), Support Vector Machine (SVM), Decision 

Tree (DT) and Random Forest (RF) models. Each of the models 

is explained beneath with the respective mathematical 

equations that reinforce its functionality. 

Flow Duration 

(scaled)  

Fwd Pkt Len 

Mean (scaled) 

Bwd Pkt Len 

Std (scaled) 

Label  

-0.85 -0.85 -0.87 0 

1.50 1.49 1.48 1 

-0.99 -0.88 -0.89 0 

0.35 0.24 0.28 1 

Table 3.1: Sample of the Dataset after Feature Scaling 

3.5.1 Logistic Regression (LR) 

 Logistic Regression Logistic Regression is a 

supervised classification algorithm that approximates the 

likelihood that a piece of data will be a member of a specific 

class by using the logistic (sigmoid) function. It is extremely 

popular in intrusion detection because it is interpretable and 

effective at binary classification. Mathematically, it is obtained 

as equation 3.10.Given an input feature vector x = [x1, x2… xn], 

Logistic Regression predicts the probability of class y𝑦 ∈
 {0, 1} as:  

 𝑝(𝑦 = 1𝑥) =  𝜎(𝑤𝑇𝑥 + 𝑏)  

Where 1 

𝜎(𝑧) =  
1

1+ 𝑒−𝑧    (3.10) 

 w = weight vector  

 b = bias term  

 𝜎(𝑧) = sigmoid activation function  

Decision rule: 

Ý =  {
1, 𝐼𝑓 𝑃(𝑦 =

1

𝑥
) ≥ 0.5

0,             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 

Sample Calculation of the mini dataset of table 3.1 

Take record 1:  

  x = [-0.85, -0.85, -0.87] 

Assume model parameters:  

  w = [0.4, 0.3, 0.2], b = -0.1 

Compute a linear function  

  z = (0.4) (-0.85 + (0.3) (-0.85) + (0.2) (-0.87) 

0.1 

   z = -0.869  

Apply sigmoid  

   𝜎(𝑧) =  
1

1+ 𝑒0.869  ≈ 0.295 

Decision rule  

Since 0.295 < 0.5, prediction is  

 ý = 0 

3.5.2 Naïve Bayes (NB) 

Naive Bayes is a Bayes classifier that assumes the 

conditional independence of features and is a probabilistic 

classifier. In intrusion detection, it is efficient as it is simple, 

scalable and can process high-dimensional data. Although it is 

naively made, it usually competes well in the classification of 

network traffic to be benign or malicious (Zhang, 2004). It is 

mathematically represented as in equation 3.11. 

For a class Ck and feature x = (x1, x2… xn):  

𝑃(𝐶𝑘⃓𝑥) =  
𝑃(𝐶𝑘) ∏ 𝑃(𝑥𝑖)\𝐶𝑘)𝑛

𝑖=1

𝑃(𝑥)
  (3.11) 
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Decision Rule  

   

    ŷ = 

arg max𝐶𝑘
𝑃(𝐶𝑘) ∏ 𝑃(𝑥𝑖\𝐶𝑘)𝑛

𝑖=1   

Sample calculation from the mini dataset in Table 3.1 

Assume prior probabilities  

P (Attack) = 0.5, P (Benign) =0.5 

For a new sample x = (0.35, 0.24, 0.28) 

Suppose feature likelihoods (Gaussian estimated) yield:  

P (x\Attack) = 0.08 

P (x\Benign) = 0.01 

Posterior:  

   P (Attack\x) ∝ 0.5 x 0.008 = 0.04 

   P (Benign\x) ∝ 0.5 x 0.008 = 0.005 

Decision: Attack since 0.04? 0.005 

3.5.3 Decision Tree (DT) 

Decision Trees Decision Trees are non-parametric classifiers 

that divide data into subsets according to feature values based 

on the feature information gain or Gini impurity. They are very 

common in IDS studies due to their interpretability and capacity 

to assume non-linear correlation in network traffic (Quinlan, 

1993). The Decision Tree is mathematically modelled as in 

equation 3.12. 

Entropy: 

𝐻(𝑆) =  − ∑ 𝑝(𝑐)𝑙𝑜𝑔2𝑃(𝑐)𝑐∈𝐶   (3.12) 

Information Gain:  

   𝐼𝐺(𝑆, 𝐴) = 𝐻 (𝑆) −

 ∑
|𝑆𝑣|

𝑆
 𝐻(𝑆𝑣)𝑛∈𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)   (3.13) 

 

Sample Calculation from Table 3.1 

 For dataset labels: [0, 1, 0, 1]:  

  H(S) - - (0.5 log2 0.5 + 0.5 Log2 0.5) = 1 

Now split on x1 (Flow Duration, threshold = 0) 

Left (x1 < 0: label [0,0] → H = 0 

Right (x1 > 0: labels [1, 1] → H = 0  

  IG (S, x1) = 1 – (0.5.0 + 0.5 . 0) 

3.5.4 Support Vector Machine (SVM) 

 SVM Support Vector Machine (SVM) is a supervised 

learning algorithm that is commonly used in intrusion detection 

as it is capable of operating on high-dimensional data and 

optimize the distance between normal and malicious categories. 

The algorithm operates on the principle of determining a plan 

that best divides the data onto the classes of the data, where the 

marginization is maximized between the support vectors. The 

network security literature has extensively applied SVM in 

anomaly detection and one-way traffic classification because it 

is resistant to overfitting and because it can generalize (Cortes 

and Vapnik, 1995). It is mathematically modelled as equation 

3.14. 

Given a dataset (xi,yi) where xi ∈ Rn and yi ∈ {−1,+1}, the SVM 

optimization problem is: 

𝑚𝑖𝑛𝑤,𝑏,𝜉
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑘

𝑚
𝑖=0   (3.14) 

Subject to  

   Yi (w. xi + b) ≥ 1 – 𝜉I,  𝜉I ≥ 0 

Decision Function:  

   f (x) = sign (w . x + b) 

Sample calculation from the table 3.1 

Take two samples for a linear SVM 

Sample A: (- 0.85, -0.85, -0.87), y = 0 = -1 

Sample B: (1.50, 1.49, 1.48), y = 1 = +1 

After solving, the hyperplane are:  

 W = (1, 1, 1),  b = -0.5 

For Sample A 

f(xA) = sign (( -0.85 -0.85 -0.87) – 0.5) = sign(-3.07) = -1 

(Benign) 

For sample B:  

f(xB) = sign (1.50 + 1.49 + 1.48 – 0.5) = sign (3.97) = +1 

(Attack) 

3.5.5 Random Forest (RF) 

 Random Forest (RF) is an ensemble learning 

algorithm that constructs multiple decision trees and aggregates 

their predictions using majority voting (Breiman, 2001). It 

introduces randomness by bootstrapping training samples and 

randomly selecting subsets of features at each split. RF has 

proven highly effective in intrusion detection due to its 

robustness, resistance to overfitting, and high predictive 

accuracy (Zhang et al., 2020). Random forest is model 

mathematically using equation 3.15 

Let hi(x) denote the tth decision tree classifier. For an ensemble 

of T trees, RF prediction is: 4 

ý = arg 𝑚𝑎𝑥𝑐∈𝐶 ∑ 1(ℎ𝑡(𝑥) = 𝑐)𝑇
𝑡=1     (3.15) 

Where (∙) is the indicator function  

the generalization error depends on tree strength and correlation 

among trees:  

𝑃𝐸^ ≤  
𝜌(1− 𝑠2)

𝑠2     

 Where s is mean strength of trees, 𝜌 is correlation 

between trees  
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Sample Calculation 

 Suppose we build 3 trees: 

 Tree 1 → predicts Attack 

 Tree 2 → predicts Attack 

 Tree 3 → predicts Benign 

Final decision: 

y^=majority vote (Attack, Attack, Benign) = Attack  

3.5.6 K-Nearest Neighbors (KNN) 

 KNN is a non-parametric classifier which assigns a 

label to a new example by the dominant class of its k nearest 

instances, with distance measures (e.g. Euclidean distance). In 

Intrusion Detection, it has already found its application because 

it is simple and flexible when modelling traffic distributions 

(Ahmim et al., 2019). It is mathematically modelled as equation 

3.16. 

Given training set D = {(xi, yi)}𝑖=1
𝑁  and query x, compute 

distance  

𝑑(𝑥, 𝑥𝑖) = √∑  (𝑥𝑗 − 𝑥𝑖𝑗)
2𝑛

𝑗=1     (3.16) 

Select k nearest neighbours:  

  Nk(x) = {(xi1, yi1)… (xik, yik)} 

Prediction:  

  ŷ = arg 𝑚𝑎𝑥𝑐∈𝐶  ∑ 1(𝑦𝑖 − 𝑐)𝑖∈𝑁𝑘(𝑥)    

Sample calculation from Table 3.2 

For query x = (2, 3) and training points  

(1, 2) → Benign  

(2, 4) → Attack  

(3, 3) → Attack  

Distances:  

  𝑑(𝑥, (1, 2)) =  √(2 − 1)2 +  (3 − 2)2 =

 √2  ≈ 1.41 

  𝑑(𝑥, (2, 4)) =  √(2 − 2)2 +  (3 − 4)2 =  1 

  𝑑(𝑥, (3, 3)) =  √(2 − 3)2 +  (3 − 2)2 =  1 

For k = 3: Attack = 2, Benign = 1→ Prediction = Attack 

 Ensemble Learning Models  

Ensemble learning is a strong machine learning paradigm 

utilizing a model of prediction by fusing several base learners 

to improve upon overall performance. Ensemble methods work 

well in reducing the shortcomings of an individual model by 

aggregating a variety of classifiers (bagging, boosting, stacking, 

or voting) to minimize bias and variance and increase 

generalization, particularly in complex, high-dimensional, or 

imbalanced tasks like intrusion detection. The most recent 

studies point to ensemble methods having considerably higher 

detection and lower false positive rates than single models in 

the context of cybersecurity, due to the complementary nature 

of the individual participants, or learners, to the multifaceted 

nature of network threats (Al-Sharif and Bushnag, 2024).  

3.6.1 Bagging (Bootstrap Aggregating) 

 An ensemble learning algorithm, bagging, involves 

training many base learners (usually decision trees) on 

bootstrap samples of the original data set, and combining their 

individual predictions, usually by majority voting in 

classification or averaging in regression. The primary benefit of 

bagging is that it removes the variance through the flattening of 

the instability of high variance learners. Bagging is also used in 

intrusion detection to stabilize predictions with respect to noisy 

network traffic and minimizes false positives (Zhang et al., 

2021). Equation 3.17 is the model of bagging. 

Given Dataset D = {(x1, y1), (x2, y2)… (xn, yn)}.  

 Generate B bootstrap samples D(1), D(2), …, D(B).  

Train a base learner hb(x) on each D(b).  

The final prediction is:  

H(x) = majority (h1(x), h2(x)... hB(x)) (3.17) 

Using table 3.1, we create two bootstrap samples  

D(1) = {(x1, y1), (x2, y2), (x4, y4) 

D(1) = {(x2, y2), (x3, y3), (x4, y4)} 

Train Decision Stumps (one-level decision trees):  

On D(1), classifier h1 learns rule: “if x2 > 0 → class 1, 

else → 0” 

On D(2), classifier h2 learns rule: “if x1 > 0 → class 1, 

else → 0” 

Now predict for test input (0.35, 0.24, 0.28) 

h1: since x2 = 0.24> 0, predict 1 

h2: since x1 = 0.35 > 0, predict 1 

Final bagging prediction (majority vote):  

 H(x) = majority (1, 1) = 1 

3.6.2 Boosting  

 Boosting is an ensemble-based method of learning that 

sequentially trains weak learners, with increasingly less weight 

on incorrectly classified samples in each training. Boosting, in 

contrast to bagging which lowers variance, lowers bias in the 

form of biasing the future learners to concentrate on difficult-

to-classify examples. Boosting has demonstrated itself to be 

effective in intrusion detection systems to identify minority 

attack classes that are generally missed by single classifiers 

(Chen et al., 2020). Equation 3.18 is used to model booting. 

 Given dataset D =  {(xi, yi)}𝑖=1
𝑛   

1. Initialize sample weights:  
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  𝑤𝑖
(1)

=  
1

𝑛
, 𝑖 = 1, 2, … , 𝑛     (3.18)  

2. For each iteration t = 1, 2, …, T:  

 Train weak classifier ht(x) using weights  𝑤𝑖
(𝑡)

  

 Compute error:  

  𝜖𝑡 =  ∑ 𝑤𝑖
(𝑡)

.  I(ℎ𝑡(𝑥𝑖)
𝑛
𝑖=1  ≠  𝑦𝑖)  

 (3.19) 

 Compute classifier weight:  

  ∝𝑡=  
1

2
 In (

1− 𝜖𝑡

𝜖𝑡
)    

  (3.20) 

 Update sample weights  

wi
(t+1)

=  
exp (− ∝𝑡yiht(xi))

Zt
     (3.19) 

 Where Zt is a normalization constant 

 Final strong classifier:  

  𝐻(𝑥) = 𝑠𝑖𝑔𝑛 (∑ ∝𝑡 ℎ𝑡(𝑥)𝑡
𝑡=1 ) (3.20) 

 

Using Table 3.2 

x1 x2 x3 Y 

-0.85 

1.50 

-0.99 

0.35 

-0.85 

1.49 

-0.88 

0.24 

-0.87 

1.48 

-0.89 

0.25 

0 

1 

0 

1 

 

 

Initialize weights 

  𝑤𝑖
(1)

= 𝑛
1

4
= 0.25  ∀𝑖  

 Train weak learner h1(x): rule → “if x2 > 0, predict 1 

else 0”,  

  Correct on all four points →𝜖1 = 0 

 Compute weight  

∝1=  
1

2
 In (

1−0

0
)  →  ∞ (Perfect classifier case) 

Here boosting in the dataset converges quickly, producing a 

strong classifier with one weak learners 

3.6.3 Stacking  

 Stacking is a group technique that learns with multiple 

base learners where a meta-learner is trained on their output. 

Rather than making a vote or averaging, stacking lets a second 

model (e.g., a Logistic Regression) learn how to combine the 

predictions of base models in the most advantageous manner. 

This renders it especially effective when it comes to IDS, since 

various classifiers have varying attack patterns (Zhou et al., 

2021). It is mathematically modeled as equation 3.21. 

Given base learners h1(x), h2(x), … , hk(x) 

Construct meta-dataset D[ = {(zi, yi)} where zi = (hii(xi), h2(xi), 

. . ., hk(xi).  

Train meta-learner g(z) (e.g., Logistic Regression) on D’.  

Final model:  

 H(x) = g(h1(x), h2(x), . . ., hk(x))  (3.22) 

 

Using Table 3.4, with base learner  

 h1: SVM rule → if x1 > 0, predict 1 else 0 

 h2: DT rule → if x2 > 0, predict 1 else 0 

 

Table 3.3: Meta-dataset (prediction of base learners 

Instance h1 (x) h2 (x) True y 

1 

2 

3 

4 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

Meta-learner (Logistic Regression Perfectly learns mapping: if both =1 → predict 1, else 0 

 

 

3.6.4 Voting  

 Voting is used to combine a number of different 

classifiers: either through majority voting (hard voting), or 

averaging predicted probabilities (soft voting). It is among the 

least complicated ensemble techniques but can provide good 

outcomes in intrusion detection since it compensates the 

deficiencies of single classifiers (Kuncheva, 2014; Li et al., 
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2022). The equation 3.24 and 3.25 are used to model vote. 

For classifier h1, h2. . . hk:  

Hard voting:  

 𝐻(𝑥) = arg 𝑚𝑎𝑥𝑐  ∑ 𝐼(ℎ𝑘(𝑥) = 𝑐)𝑘
𝑘=1  (3.24) 

Soft voting:  

 𝐻(𝑥) = arg 𝑚𝑎𝑥𝑐  ∑ 𝑐/𝑥)𝑘
𝑘=1    (3.25) 

Using table 3.3 three classifiers predict for 0.35, 0.24, and 

0.28):  

SVM → 1 

Decision Tree → 1 

KNN → 0 

Hard voting: H(x) = Majority (1, 1, 0) = 1 

Soft voting (Probabilities) 

SVM: p(1) = 0.9 

DT: p(1) = 0.8 

KNN: p(1) = 0.3 

 Average p(1) = 
0.9+0.8+0.3

3
= 0.67 => 𝐻(𝑥) = 1 

 3.7 Evaluation Metrics 

 The results of the models were compared based on 

some standard classification measures, such as Accuracy, 

Precision, Recall, F1score and ROC-AUC. 

The meaning of accuracy has to do with the whole accuracy of 

the model predictions through the ratio of the correct 

predictions in the total number of predictions. The accuracy 

formula is presented by: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (3.26) 

Precision indicates how many of the predicted positive 

instances are actually positive, providing insight into the 

model's ability to avoid false positives as shown in this formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
   

   (3.27) 

Recall reflects how many of the actual positive instances were 

correctly identified by the model, indicating its sensitivity to 

positive instances represented in this formula as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
   

   (3.28) 

F1 score combines precision and recall into a single metric as 

shown in this formula: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 𝑋 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    

   (3.29) 

ROC-AUC measures the model’s ability to discriminate 

between classes by calculating the area under the Receiver 

Operating Characteristic 

3.3. Evaluation Metrics 

• Accuracy  

• Precision 

• Recall 

• F1 Score 

• Confusion Matrix 

 

4. RESULTS 

4.1. CIC-IDS-2017 Performance 

Model Accuracy Precision Recall F1 Score 

LR 88.9% 88.2% 87.5% 87.8% 

RF 92.7% 92.3% 91.9% 92.1% 

Hybrid Ensemble 95.8% 95.4% 95.0% 95.2% 

 

4.2. CIC-IDS-2018 Performance 

Model Accuracy Precision Recall F1 Score 

LR 87.5% 86.8% 86.1% 86.4% 

RF 91.2% 90.7% 90.3% 90.5% 

Hybrid Ensemble 94.6% 94.2% 93.8% 94.0% 



 
Omotayo, O. S. (2025). An ensemble models to detect intrusion using CIC-IDS-2017 and CIC-IDS-2018 as benchmarks. 

ISA Journal of Multidisciplinary (ISAJM), 2(5). 14-23. 22 

 

 

4.3. Cross-Dataset Analysis 

 The analysis of the hybrid ensemble model on CIC-

IDS-2017 and CIC-IDS-2018 datasets shows a quite high-

performance standard and good generalization ability. The 

model also achieved a high level of detection accuracy, 

precision, and Recall despite the intrinsic differences in the type 

of attacks, traffic volume, and the distribution of features in the 

two datasets. Such uniformity highlights the resilience of the 

ensemble to small scale variability in the network behavior and 

characteristics of threats. Although minor performance 

impairments were experienced, especially when a subtle change 

in attack vectors or a higher traffic density was involved, the 

general model stability was not affected. These fringe losses did 

not have a great effect on the aptitude of the system to recognize 

intrusions which might indicate that the hybrid architecture 

neutralizes the sensitivity that tends to afflict solitary classifiers. 

Of particular interest is the generalizability of the model across 

datasets, which indicates that it can be trained to accommodate 

different network conditions without a large amount of 

retraining. Such a feature is critical to the deployment of an IDS 

in the real world, where it is necessary to work in changing 

environments as the threats evolve. To further improve cross-

dataset performance, future studies may consider using transfer 

learning methods, which enable the model to store the acquired 

patterns on one data and apply them to a different data with the 

least degradation. Moreover, it could be possible to increase 

responsiveness and scalability by applying the model to the 

Internet-scale traffic and adding Internet-scale learning 

mechanisms into the model. Such improvements would not 

only enhance the operational stability of the model, but also its 

usefulness in enterprise and critical infrastructure facilities.5. 

This research conclusively supports the argument that ensemble 

learning is effective in improving the performance of Intrusion 

Detection Systems (IDS) on more than one benchmark data set. 

With six different machine learning algorithms, including 

Logistic Regression, Naive Bayes, K-Nearest Neighbors, 

Support Vector Machines, Decision Trees, and Random 

Forests, built into one hybrid ensemble structure, the model has 

better detection rates than uninterrupted classifiers. This has 

been improved in key performance measures like accuracy, 

precision, Recall, and F1-score where the ensemble is always 

better than the models that form it. In one example, the 

standalone classifiers returned erratic accuracy scores ranging 

between 85 percent and 92 percent, whereas the hybrid 

ensemble returned a consistent accuracy score of over 95 

percent in both CIC-IDS-2017 and CIC-IDS-2018 datasets. 

Hybrid model flexibility with regards to the changing nature of 

traffic and attack patterns is one of the strongest features of the 

hybrid model. The CIC-IDS-2017 and CIC-IDS-2018 datasets 

vary widely with respect to attack distribution, feature 

representations, and traffic behavior. In spite of such 

differences, the ensemble model had low error and high 

detection precision; in other words, it was powerful, and its 

generalization ability was high. This scalability is especially 

important in evolving network environments, where the nature 

of traffic and threat profile changes very quickly. The ability of 

the model to generalize to multiple datasets suggests that the 

model can be applied in the field with minimal or no retraining, 

thereby reducing the operational overhead and increasing 

response time. 

The ensemble approach is more robust and reliable as compared 

to single classifiers. Single models tend to overfit, or to 

generalize poorly, or to be sensitive to a particular type of 

attack. We can eliminate these slips by applying the ensemble 

technique that exploits the complementary nature of the 

different algorithms to obtain a more stable and balanced 

detection system. Further, the stacking and voting properties of 

the ensemble also help support decisions and reduce the 

chances of false positives and enhance overall system 

reliability. 

These results have serious implications concerning the future of 

developing IDS. The use of single-model architectures might 

no longer be adequate as cyber threats become more complex 

and network environments become increasingly heterogeneous. 

The modern cybersecurity issues can be solved in an effective 

and scalable way through ensemble learning, especially when a 

hybrid format is used. The problems of the realization of the 

elements of deep learning, simulation of traffic in real-time and 

adaptive learning, enhancement of the accuracy of detection 

and efficiency of its performance should be investigated in the 

future. Also, explainable AI methods may increase 

transparency and user-confidence in automated IDS decisions, 

leading to increased use in enterprise and critical infrastructure 

environments. 

6. CONCLUSION 

 The relative comparison of the CIC-IDS-2017 and 

CIC-IDS-2018 data sets demonstrates the power and stability 

of the suggested hybrid ensemble scheme to identify network 

intrusions. Even with the natural variations between the two 

datasets in traffic profile, types of attacks, and distributions of 

features, the model still exhibited a consistent performance with 

high accuracy and low false positive rates experienced in both 

settings. This consistency also justifies why the model is 

appropriate to be implemented in real world intrusion detection 

systems and typically the network conditions and threat 

environments are ad hoc and dynamic. Its ability to generalize 

across datasets means the ensemble is not excessively reliant on 

the characteristics of one specific source of data, which is a 

crucial attribute of cybersecurity implementation. 

In order to improve the cross-dataset generalization further, 

future studies on the topic should consider the application of 

transfer learning methods, whereby the model draws on the 

information learned on one dataset and applies it 

advantageously to the other dataset. In addition, the model 

could be made to be more resilient and scalable by scaling it to 

Internet-scale traffic, which is characterized not only by high 

volume but also by a wide variety of protocols and dynamic 

attack vectors. Adding domain adaptation techniques and real-

time learning can also assist the model to adapt to new threats 

without necessarily undergoing a lengthy retraining process. 

This would not only improve the functionality of the model but 

it would also simplify its application in real world applications 

with heterogeneous and risk prone networks. 
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